
Journal of Engineering Mathematics, Vol. 13, No. 3, July 1979 
© 1979 Sijthoff & Noordhoff International Publishers - Alphen aan den Rijn 
Printed in the Netherlands 

271 

Oscillatory flow around the edge of a flat plate 
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SUMMARY 

The paper deals with oscillatory flow of an incompressible viscous fluid around the edge of a flat plate. The 
primary interest is, in connexion with the flow in open pipes near the edge due to acoustic standing waves, in 
the dissipation associated with the flow around the edge. Mathematically, the problem to find the flow 
around the edge can be formulated as an integral equation for a dipole distribution along the plate. This can 
be simplified by making use of the fact that the Stokes boundary layer is thin with respect to the character- 
istic length scale of the flow. The simplified equation is solved by a method used recently by Boersma. With 
the help of this solution the dissipation is calculated. The result is compared with exact, numerical, calcula- 
tion by Disselhorst. Good agreement is found. 

1. I n t roduc t ion  

In the course o f  his work  on resonant  acoustic oscillations in pipes, Disselhorst [1] considers 

viscous and thermal  dissipation associated with  these wave mot ions .  

Figure 1. Oscillatory flow around the edge of a pipe or around the edge of a flat plate in the presence of 
another one. 
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272 J. H. M. Disselhorst and L. van Wi/ngaarden 

The largest part of this takes place in thin boundary layers along the walls of the tube. When 
the flow does not separate from the edges, that means, when the amplitude of the motion is 
small*, this dissipation should equal the external work on the air inside the tube. Measurements 
indicate, however, a dissipation which is systematically by a few percent larger than would 
follow from dissipation in the boundary layers at the wall. A possible explanation lies in the 
additional dissipation in the flow around the edge (Figure 1) where strong velocity gradients 
occur. Disselhorst [ 1 ] therefore gives attention to the flow around the edge. This can be con- 
sidered as locally two-dimensional and this two-dimensional flow may be, for sufficiently low 
amplitutes, described by the linearized Navier-Stokes equations. Starting from these equations 
Disselhorst formulates a Wiener-Hopf problem for the stream function. As often, a hard pro- 
blem is the splitting of the kernel. 

This is done in Disselhorst [1] by application of an idea due to Koiter [2], which consists in 
replacing the kernel by a simpler one with, however, the same behaviour on the real axis. In the 
final stage the computation is numerical in Disselhorst [ 1 ] and results in the viscous dissipation 
expressed in terms of the corresponding dissipation in the boundary layer approximation 
(which is singular at ~' = 0 in Figure 1), however, not starting at ~' = 0 but at ~' = x'0. Later also 
the kernel splitting was done numerically, as reported in Disselhorst [3]. Meanwhile the ques- 
tion may be asked whether a simpler (approximate) solution is possible by making use of the 

following feature of the flow. 
The characteristic length scale of the flow is the diameter of the pipe. The characteristic 

1 

viscous length in the flow around the edge is (v/~2) 5 , where v is the viscosity of air 
(1.5 x 10-6m2/s) and ~ the angular frequency of the motion (of order 102c/s). The ratio 
between them is very small and this allows a simplification which will be carried out in the next 
section. In Section 3 the resulting integral equation will be solved by using a method of solution 
applied recently by Boersma [4]. Finally the result for the dissipation is compared with those 

obtained by Disselhorst [1 ], [3]. 

2. Formulation of the problem 

We consider standing acoustic waves in an open circular tube. The flow is two-dimensional near 
the edge and like depicted in Figure 1: alternating and flowing around the edge with angular 
frequency ~.  Because of the two-dimensional character of the flow in the vicinity of the edge 
we consider here two parallel plates, a distance 2rid apart. The viscous flow around the edge of 
each of the plates may be described for sufficiently low amplitude by the linearized Navier- 
Stokes equations which read in terms of the Cartesian coordinates ~' and ~" with origin at the 
edge, and time t (see Figure 1) for the corresponding velocity components u and v and the 

pressure p: 

au 

at 

av 

at 

a2u a2u ) (2.1) 1 a___p_p +v  - - +  

( a ' v  a ' v )  (2.2) 1 a__p._p +v + - -  , 

In the application in Disselhorst [ 1 ] the edge is round so that for low amplitudes no separation occurs. 
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Oscillatory flow around the edge o f  a flat plate 273 

3u 3v 
- -  + - -  = 0 .  ( 2 . 3 )  

In formulating the momentum equations (2.1) and (2.2) and the equation for mass conserva- 
tion (2.3) variations in the density p are neglected. This is fully justified by the fact that in the 
application which we have in mind the wave length is large both compared with d (for a circular 
tube with radius R the equivalent plate distance is R) and with (v/~2) ~ (Disselhorst [ 1 ]). 
Far from the edge the velocity should approach the inviscid velocity given (with distance 27rd 
between the plates) by 

~bo' = [U~ d { ~  + (~,2 +~2)~  }]teint" (2.4) 

In this expression Uo. is the velocity between the plates far from the edges (see Figure 1). In 
writing down (2.4) it is understood that q~0' is the real part of the expression at the right-hand 
side. Of course, (2.4) represents the true inviscid velocity only in the vicinity of the edge. The 
true inviscid velocity tends for ~' ~ oo inside the plates to Uoo and outside the plates to zero. 
Since we are, in this context, only interested in the vicinity of the edge, the approximation 
(2.4) suffices. At the plate the no-slip condition has to be satisfied, 

u = v = O  on ~ ' = 0 ,  ~ ' > 0 ,  (2.5) 

while symmetry requires 

u = 0  on ~ = 0 ,  ~"<0 .  (2.6) 

From (2.1) - (2.3) it follows that the pressure p is a harmonic function. When ~b' is a solution 
of Laplace's equation we may therefore write 

P = - P  --,~3.,. (2.7) 
3t 

Without vorticity, ¢' would be the velocity potential. With vorticity we can represent the velo- 
city as resulting from q~' and a stream function q/ ,  

a,/,' aq,' (2.8) 

~¢' oq~' 
v -  a x  . ( 2 . 9 )  

Inserting (2.7) - (2.9) into (2.1) and (2.2) gives for the stream function ko' the equation 

- v + - -  ( 2 . 1 0 )  
at \ 3~.,2 a~,2 
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It is convenient to split up the potential $' in 

I 

¢' =¢o' +¢ t  , 

J. H. M. Disselhorst and L. van Wijngaarden 

(2.11) 

where ~bo' is given by (2.4) and represents the velocity field far from the plate outside the region 
containing the vorticity. The potential $~' is unknown and must be chosen in such a way that 
together with q~' the equation (2.10) and the boundary conditions (2.5) and (2.6) are satisfied. 
At infinity both # '  and $~' must vanish. Associated with $~' is a stream function ~Iq' according 
to the complex potential w', 

• F W I = ~1 p + t'tI/1 . 

Expressing the irrotational part of the disturbance velocities in #, '  rather than ~'~, we obtain 
from (2.5), (2.6), (2.8), (2.9) and (2.11), using (2.4), 

,v'+,Vl'=O on (2.12) 

a,I,' a% - - +  

- - +  

+ ( ~ . ) k e i S ~ t = O  on ~' =0, ~ '>0 ,  (2.13) 

=0, on ~ '=0 :  ~ < 0 .  (2.14) 

Finally, 

for 
o/  ~ 0  

(2.15) 

Because of the linearity of the problem, all dependent variables are proportional to e i fzt .  In 
order to get rid of this factor we introduce 

q~' = ~ e m r ,  (2.16) 

~'1 = ~ 1 e in  t. (2.17) 

Introducing this in Laplace's equation for ~I" 1 and (2.10) for ~I" we get, with 

~2 i ~  ( 2 . 1 8 )  
v 

for qz and q/: 

0 2q~ + 0 2q~ _ ~ 2 ~  O, (2.19) 
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~)2~ 1 ~)2~ 1 
=0, (2.20) 

Introduction of (2.16) and (2.17) in (2.12) - (2.15) gives 

q t + q q = 0  on ~ '=0 ,  ~ ' > 0 ,  

~xp 3~I, l I U~d \,- 
_ _ +  + _ _  2 i)~' i)~ ( 2~ ) =0 on ~ ' = 0 ,  ~ ' > 0 ,  

aq~ aqq 
- -  + = 0 ,  on y = 0 ,  ~ < 0 ,  
# # 
q/ 0 -.+ } 

} for (~'= +~'=){ -+ oo. 
l xlq -+0 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

A solution of (2.19) which vanishes at infinity and for which a~/b~ =0 one'  < 0 , 9  = 0, is 

~ = l ~ f f  % -- f(~j)Ko tX { ('~ -'~')= + 9  }¼l d~,  (2.25) 

where Ko is the modified Bessel function of the second kind and f ( x )  an arbitrary function 
defined for x > 0. Likewise, a solution of (2.20) satisfying 091/a~' = 0 one'  = 0,x% <O, vamsh-" 
ing at infinity and due to a dipole distribution g(~) is 

" u  " v  t , ,  

1 f "  g ( ~ ) ( ~ - x )  
. . . . . . .  J o  d~.  .i,, -57-. ~(~_~)= +).~ (2.26) 

The sum of the right-hand sides of (2.25) and (2.26) has yet to satisfy the boundary conditions 
(2.21) and (2.22), which yields 

,%, 

fo - - - -  l f f f  ",, "., 1 .o g(~) d~+ f ( ~ ) K o { X [ { ~ - ~ l } d ~ = O , ~ > O ,  (2.27) 

_ _ ( < d ) - ~  i dg f (~ )  + = 0. (2.28) 
-~d~ \Z~ 

Elimination off(~')  from (2.27) and (2.28) yields 

 Yo" 40" , C - 7 ,  
~ - x  

(229, 2'~ - ~ Ko { >, I ~ ' - ' ~  "' 
d~ j 
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Although the approach in Disselhorst [1] differs from the one presented here one could say that 
Disselhorst's solution is equivalent to solving the integrodifferential equation (2.29). We now 
use the fact that in the envisaged application to acoustic waves in tubes ;L as given in (2.18), is a 
large quantity. This means that the main contribution to the second integral at the left-hand 
side of (2.29) comes from the neighbourhood of~ = ~'. Since 

f ~  7r go {Xlxi}dx=~, 

we may, for sufficiently large 3., approximate the second integral in (2.29) by 

Then the equation (2.29) reduces to 

1 ** g(~) d ~ -  I dg 1 (U~d)~ ~ > 0 .  
2--; fo 2x ' (2.30) 

In the remainder of this paper we will be occupied with solution of (2.30). 
In order to appreciate the nature of the approximation involved in approximating (2.29) 

with (2.30), it is illuminating to derive (2.30) in another way. It suggests itself in view of the 
large value of (v/I2)¼ in respect to d, to take the boundary layer approximation of the equa- 
tions (2.19) and (2.20), that is, to neglect the derivatives with respect to ~' and to consider only 

. 'ks 
the region x > 0. Then, with 

.o  

being the counterpart (for small 9 )  of ¢o, it is readily verified that the 'boundary layer' solu- 
tions are 

q'(B) = ~ \ - - -~  ] exp(-  )~'), (2.31) 

1 [ U2d)  ~ (2.32) 

q'~(B) = -  2 k  2~ ' 

so that the resulting stream function is in ~ ~> 0: 

*R = ( U2---d 1 1 exp(-  ~,~') } (2.33) 

\ 2~, ) - ~ { ~ ' - ~ + ~  
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The associated vorticity is 

co:--72q~R * -  a2q~R - X ( U ~ d ) "  exp(--X~'). 
2 

The dissipation is 

fo £ D 'x, d~' I ¢o 12 d ) .  
oo 

277 

(2.34) 

(2.35) 

When we insert (2.34) into (2.35) it is readily seen that the integral diverges because of the 
behaviour of I co 12 at both ~" ~ 0 ~' and x ~ oo. The latter divergence is not serious because it is 
due to the assumed behaviour of the velocity (derived from ~b~ in (2.4)) outside the boundary 
layer. The former divergence however is due to the boundary-layer approximation, which 
neglects x-derwatwes with respect to y -denvatwes which is not justified near x = O. We seek to 
remedy this by taking the boundary-layer approximation to the rotational part ~I, of the stream 
function, which means replacing (2.19) by 

~2tI, 
_ X2 tI, = 0, (2.36) 

while keeping (2.20) as it stands. The solution of (2.36) vanishing for ~ ~ ~ is 

= A(~')exp ( -  X~'), (2.37) 

and a similar one ,x, exp (X~') for ~ ~ - ~ .  With (2.37) in stead of (2.25) and with (2.26), the 
conditions (2.21) and (2.22) become 

t%, 

fo I °0 g($) d ~ = 0 ,  ~ > 0 ,  (2.38) 

1 dg ~,A(~') + - -  = 0. (2.39) 

- i  d~' 2~' 

Eliminiation of A(~) between (2.38) and (2.39) gives again equation (2.30). This integral 
equation is of a type discussed by Van de Vooren and Veldman [5] and solved by Brown [6] 
and in a particularly elegant way by Boersma [4]. In the following we shall attempt a solution 
of (2.30) along the lines of Boersma [4]. 
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278 J. H. M. Disselhorst and L. van Wijngaarden 

3. Solution of the integral equation 

We render the spatial coordinate dimensionless by scaling it with the viscous length { [ ?, [ }-l = 
(v/~2)k (see 2.18), 

,x, x 
x = (3.1) 

21~,1 

Introducing this into (2.30) we get, with the help of (2.18), the following integral equation for 
g(x): 

dg _ e i"/4 "~* g(t___)) d t + i T x  ", x > 0  (3.2) 
dx 2~r t -  x 

where 

7 = 2312 ( U~d ) ~ (3.3) 

Before proceeding it is, for later reference, useful to determine the asymptotic behaviour of 
g(x) for large and small x. For large values of x the boundary-layer solution explored in the 
preceding section is fairly accurate. Since 

f /  lnt n 2 
t~ (t - x) dt = ---r,x~ x > 0, (3.4) 

it follows from (2.26) and (2.32) that in the boundary-layer approximation 

In x (3.5) g ( x )  • 
X2 

This means that dg/dx %lnx/x a/2 for large x and therefore it is negligibly small with respect to 
the other terms in (3.2). Putting the right-hand side of (3.2) equal to zero we get, using (3.4), 

g(x) ,X,_TIr  _l e_i~r[ 4 ln_,x , x > > l ,  (3.6) 
x2 

in accordance with (3.5). Near the origin, x << 1, the term dg/dx in (3.2) dominates over the 
integral term whence 

I 

g(x) ~ "rx ~ , x << 1. (3.7) 

In order to solve (3.2) for g(x) we introduce, following Boersma [4], 
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1 g(0 F ( z ) = - - -  L dt. (3.8) 
2rri ~ o  t - z 

From (3.6) and (3.7) it follows that F(z) is analytic in the z-plane, cut along the positive real 
axis. When we denote F ( x  +_ io) by F+-(x) we have from the well-known Plemelj relations (see 

e.g. Roos [7]) 

1 fo  ~ g(t)  d t ,  (3.9) F+ (x) + F - ( x )  = - ~ t - x 

F + ( x ) - F - ( x ) = - g ( x ) ,  x > 0 ,  

F+ ( x ) -  F - ( x )  = O, x < 0 .  
(3.10) 

With these relations, the singular integral equation (3.2) can be written as 

d F  + i ieinl4 F + d F  - l 1 _! - - - - -  + i . . . .  ~ ieiTrl4F-+ ~Tx 2. (3.11) 
dx dx  

Now we define, like Boersma [4], the complex Laplace transform G(s) ofF(z)  by 

G(s) = f o  e - szl2 F(z )dz ,  (3.12) 

with 

arg s + arg z = 0. (3.13) 

G(s) is analytic in the wole s-plane with the exception of the positive real axis s = a, o > 0, 
where G(o) has a discontinuity. Indicating G(o +_ io) by G+-(o), we have from (3.7), (3.9), 

(3.10), (3.12)and (3.13): 

,G-+(o) = f o  F~ (x) e -  ox/2 dx,  

fo ' fo dF~ ax/2 dx  = o G +-(o)+ ~ • 
-~-x  e 2 ~ t 

(3.14) 

(3.15) 

With the help of these relations, Laplace transformation of (3.11) gives with 

q = exp (3rri/4), (3.16) 

the following inhomogeneous Hilbert problem 

(o + q) G +(o) - (o - q) G-(a) = 7 V rff~- a- r ,  o > O. 

a +(o) - G-(o) = O, o < O. 

(3.17) 
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In the following solution we define the branch cut of s { and of In s on the negative real axis. 
The solution of this Hilbert problem can be achieved in a slightly different way compared with 
the solution in [4] because in this particular case we observe that 

[- ] _ (o _ q)F__ ] = 
(o + q) L 2 s i ( - s ) ~ J  s = o + io = o - , o  o,  

This means that ifX(s) is the solution of the corresponding homogeneous Hilbert problem, defin- 
ed by 

(o + q) X+(o) - (o - q) X-(o) = O, o > O, 

X+ (o) - X-(o) = O, o < O, 
(3.18) 

the solution of (3.17) is 

a ( s ) -  (27r)~,r + p(s)X(s) ,  
2 i s ( - s ) {  

(3.19) 

P(s)  being an arbitrary entire function of s. The solution of (3.18) is 

1 fo "~ I n { ( t - q ) / ( t + q ) } d t "  In X(s) = W(s) = ~ t -  s (3.20) 

From this it follows 

£ dW(s)  _ 1 In t -  q d 1 d t  = 
ds 27ri t + q dt  t -  s 

1 -s 1 -s  
1 1 I n  - q  + - -  I n  - -  - -  I n - -  . 

21ri s q s -  q - q  s + q q 

We obtain by integration of the above relation 

W(s) = l n ( - s ) {  - ln(s - q)¼ - ln(s + q)~ - h(s) ,  (3.21) 

with 

1 ( 1 1 ) {  4 1  h (s) = - 2rr-"-{ Jo~ z + q z - q In ( - z )  - dz. (3.22) 

Since (cf. 3.20) W(s) = ln(X(s))  we get from (3.21) and (3.22) for the solution of the homogene- 
ous Hilbert problem (3.18), 
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( - s ) {  e - h ( s ) .  (3.23) 
S ( s )  = { (s - q)  (s + q)  }¼ 

By inserting (3.23) in (3.19) we may obtain an expression for G(s). Eventually we are interested 

in g(x), the Laplace transform of which, M(s), say, is given by, from (3.10) and (3.14), 
cao 

M(o) = ~°°e-axl2 {F-(x) - F+(x) }dx = Jo g(x) e -axl2 dx 
a0 (3.24) 

= c + ( o )  - G- (o ) .  

From this relation and from (3.19) it follows that we need to determine the behaviour X -+ (o) 
of X(s) for s = o -+ io. From (3.22) and (3.23) we have, defining H(s) as 

H(s) = - 2rr"--~ • ~ +q q 

o-~ (o ~- q)k e -/4(o) (3.26) 
X + ( o ) = -  ( o - q ) ¼  (o+q)¼ (o-+q){ 

With the help of (3.19) and (3.26) we find for M(o) as related to G(s) by (3.24), 

2q°V2 e-H(a) (3.27) 
M(o) = ~o - P(o) (o - q)#" (o + q)3# • 

The unknown entire function P(s) has to be determined from the following conditions to be 

imposed on M(o): 
i) The asymptotic behaviour ofg(x),  as expressed in (3.6) for large x and in (3.7)for small x, 
leads with the help of the theory of Laplace transformations, see e.g. Carslaw and Jaeger [8], to 
conditions for the asymptotic behaviour of M(o). Since for large x, g(x) behaves as xqIn x, 
M(o) must for small o behave as the Laplace transform of x~ln x which behaves, see e.g. 

Campbell and Foster [9], as a~ln o. Therefore, from (3.6), 

1 l i z r /4  lno M(o) • 7r- (27r)~ e-  , , o-+ 0. (3.28) 
oF 

Likewise it follows from (3.7) that 

1 

M(o) "v 3'(2rr)S (3.29) 
0 a " " ~ - -  ~ O ...+ oo 

ii) When M(o) is inverted by use of the inversion theorem of the Laplace transformation, it 
follows from g(x) = 0 for x < 0 that M(s), the analytic continuation of M(o) in the (complex) s- 
plane cannot have singularities in the right-half plane. 

From (3.25) and (3.27) we obtain for o ~ 0: 
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M(o) ( oln o ] 
o3 # - 2 P ( o )  e 3ni/a o~ 1+ ilr q l "  

Comparison with (3.28) shows that therefore 

2P(o)eanila_ (2n)~7 (1 + a l o + a 2 o  2 + ). 
oT-- ... (3.30) 

Inserting this in (3.27) and taking account of (3.29) we observe, bearing in mind that e-H(**) is 
finite, that in the brackets in the right-hand side of (3.30) only the first and the second term 
can be retained. Hence 

7(27r){ { e 31ril8 e - H ( ° )  } 
H(o)-  o, # 1 -  (o_q) , / , (o+q) ,  # (1 + a l o )  . (3.31) 

Because of condition ii), formulated above, a singularity of M(s) in s = - q  (which is, see (3.16), 
in the right-half plane) has to be ruled out. In this connexion it is convenient to split up H(s) in 
a part regular in s = - q  and a part which is singular there. This is accomplished by writing 
instead of (3.25) 

H(s) - d t  + In 
2 ni Jo -4- "t +-q t - \-~L--s 

I ( q + s ~  z 
=K(s)+ln q - s  ] ' 

(3.32) 

in which the function K(s) is now regular in s = - q .  Inserting (3.32) in (3.31 ) we obtain 

eS'i/ae-K(s) (1 + als)} (3.33) M(s) - 7 (2~r)~ 1 - 
s3/2 (s + q )  (s - 

For this expression to be regular in s = -q ,  al  has to assume the value a~ = q-1 = exp ( -  3rri/4), 
whence we have finally 

M(s)- 7(2n)-~ { e-~ilSe-K(s) } 
s31~ 1 - - - - - - 7  • (3.34) ( s - q ) ~  

4. Calculation of dissipation 

If we were interested in the velocity distribution around the edges in Figure 1, we would have 
to invert M(s), as given in (3.34), which is not possible analytically. As explained in Sections 1 
and 2, our purpose is to calculate the excess dissipation at the edge. If 60' denotes the vorticity, 
that dissipation is given by 
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to ay, (4.1) 

where /a is the dynamic viscosity of the fluid and the bar over to,2 means the average over a 
period. 

In our theory the boundary-layer approximation has been taken of the vorticity equation 
t ~  . . 

(2.10), which means apart from the neglect of the x-derlvatwe, that only the positive part of 
the real axis is considered. When, like with the other quantities, we write 

' coexp(i~t), (4.2) t o  = 

and use the relation 

' - 7  2 ~ '  ( 4 . 3 )  ( . O  ----- 

we can write instead of (4.1): 

oo 2 /a f:oo d~' f _ ~ 1 7 2 ~ 1 2  d~'. (4.4) D= ~- 2 f '_ d"~ f:Jtol d}" = -~ 

The boundary-layer approximation for the vorticity leads, as shown in Section 2, to (2.36) for 
• , with solution given by (2.37). Inserting this in (4.4) we get 

D=,a : :  d~' fo®lX2A(~)exp( - ;@')12 a¢~'. 

t ~  . . 

Carrying out the integration with respect to ~' and using x instead of x, as given m (3.1), we find 

D= ulXI2 f7 2 #2 A(x) A(x) dx, (4.5) 

where we denote the complex conjugate of A(x) by A(x). From (2.39), (3.1) and (3.3) we have 

A(x)= IXI{ dg , l} ---2- - - ~  +~.yx- , (4.6) 

which may be introduced in (4.5) to give the dissipation D. As is readiliy verified the same 
expression for D is obtained when we start with the solution (2.25) for ~,' and carry out the 
approximation leading to (2.30). The function f(x~ is related to A(x "x') by k4(x  ~) =f(x~, as 
follows from comparison of (2.28) with (2.39). In Section 2 we emphasized that taking the 
boundary-layer approximation of all equations leads to a divergent integral for the dissipation. 
In fact, when for q~ in (4.4) the expression q~R in (2.33) is inserted the result is for D B with 
which we indicate the dissipation in the 'full' boundary-layer approximation, 

pU'ao.d(~2v) { f :  dx (4.7) 
DB- 23/2 -7" 
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This integral diverges both for small and large x. 
Because of (3.7), A(x) tends to zero for small x, leaving only the divergence at x ~ oo in 

(4.5). This is, as mentioned in Section 2, due to the behaviour for large ~' of a$'0/a~'in (2.4). 
We could avoid this by choosing instead of $~ in (2.4) a more complicated expression which for 
small x behaves like the right-hand side of (2.4) but tends to zero for large x. A convergent 
integral is obtained in another way when we compare the dissipation D as given by (4.5) with 
the boundary-layer dissipation D B in (4.7), however, not integrated between 0 and oo but 
between a value xo and infinity. In this way, used in Disselhorst [1], the true dissipation is 
expressed as an equivalent portion ofD B. Hence we write, following Disselhorst [1 ], 

/alXI 2 fo ~ oU2d(~2v) ¢ f~° dx =0 (4.8) 2 ~# {A(x)A(x) } dx 2 "1' o 

or, introducing Heaviside's step function E(x) with 

E(x ) = O, x < 0 

E(x)= I, x>O, 
1 

so+{ } oU_,d(~2v)~ ln(l/xo) #IXI2A(x)A(x)_ pg~d(~2v)~E(x - 1) dx. 
x 

(4.9) 

Using the definition (3.3) for 7 this can be written as 

2 

7 " 4 ' n ( l / x o ) = f ; I A ( x ) A - ~ - { 2 ~ x  E ( x - 1 ) }  ]dx .  (4.1o) 

This can, by Parseval's Theorem, (see e.g. Doetsch [10]), be put in the form of an integral of the 
moduli of the Laplace transforms. The Laplace transform of A(x) can with the help of (3.24) 
and (4.6) be expressed in terms of M(s) in (3.34). Denoting the Laplace transform of A(x) with 
N(s) we have from these relations 

(2) ~ eni/Se-K(s) 
N(s) = 7 - r ' - ' - - - r  • 

s ~ (s - q)~ 
(4.11) 

When we define V(o) by 

OOe °x/2 ~x E(X-  1)dx= V(o), 
2 

(4.12) 

we have from (4.10) - (4.12), by virtue of Parseval's Theorem: 

~2 / 41n (1/x o) = ~--~ f y~,{ I N( ir)12 - I  V(ir)12}dr. (4.13) 
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From (4.11) it follows that 

I N(ir) 12 = N ( i r ) N ( i r ) -  n'l= exp [-2R {K( ir )  }1 (4.14) 
2 Irl{r 2 -2{r+1  }} ' 

where R{ } means 'real part of{ }'. For r > 0 it follows from the definition of K(s) in (3.32), 
that 

' t 2 r = ' 2~ £ 'r 1+ 3 + 2 ~ r + l  
- 2 R  {K(ir) }= - - Jo In t dt  + In , (4.15) 

n 1 + t 4 -8 r 2 - 2~ r + 1 

Likewise, for r < 0, 

1 

2 -~ [-Irl 1 +t 2 
- 2 R { K ( - i l r l ) } = - - ~ - a o  l + t  4 

1 r 2 - 2 ' 
- -  In t d t -  -~ ln  I r l  + 1 

r = + 2} I r l+ I 
(4.16) 

Evaluation of (4.12) gives 

V(ir) = e -  irx l 2 "Y dx = 
vT;- 

. (4.17) 

In this expression 

C(x)= f o  c°s (~n t2)d t '  

fo S(x) = sin (~nt2)dt. 

Insertion of (4.14) - (4.17) in (4.13) gives for ln( l /xo):  

' Z(r) + 1 dr 
ln(1/Xo)= i ~ {r 2 - 2{r + l } } r  

-f(II+ 2c~ { ( i f ){}  +2S2 { ( r ) { }  - 2C { ( r )  -~ } 

- 2 s { ( r ) } }  I d'- ~ 

(4.18) 

(4.19) 

(2.20) 

The function Z(r) is defined by 

- -  In y d y } .  ( 4 . 2 1 )  
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It is easily verified from the above expression that Z(t) = Z(t -] ). Making use of this property of 
Z(t) we write (4.20), for numerical purposes, as 

ln(1/Xo)= Z(r) + - I - -  
{1 - 2~r + r 2 }~ r 

-{½-c t -7 (4.22) 

The integrand in the first integral at the right-hand side of (4.22)behaves for r ~ 0 like 
1 + 2-~h+ O(r), the integrand in the second integral as Orry~ + O(r~). Therefore both integrals 

exist. The integration was carried out numerically and resulted in 

ln(1/Xo) = 4.63, (4.23) 

correct in two decimal places. The meaning of this result was set out at the beginning of this 
section: apart from a constant, { pU~ d(~2v){ }/2 a/=,'ln (1/Xo) gives (see (4.7)), the dissipa- 

tion between x = Xo and x = 1 in the most simple kind of boundary-layer theory. The actual 
dissipation as given by the first term on the left-hand side of (4.8) can be expressed in terms of 

this, namely as the dissipation according to simple boundary-layer theory, however, not starting 
in x = 0 (which would make the dissipation infinitely large) but in Xo. 

Finally we compare our result with the results obtained by Disselhorst. In Disselhorst [ 1 ] the 
only approximation consists of replacing the kernel in the integral equation, according to 

Koiter's [2] suggestion, by a simpler one. Disselhorst's [1 ] dimensionless abscis, ~', say, is related 
to ours by 

1 
~= ix .  

Hence Disselhorst's [1, p. 82] result 

1 

22 ln(1/~o) = 6 

gives, written in the variable x used here, 

ln(1/xo) = 3.55, (4.24) 

which is not too far from the result in (4.23). Later an exact numerical calculation ofln(1/xo) 
was given in Disselhorst [3], resulting in 

ln(1/xo) = 3.73. (4.25) 
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Comparison of  (4.23) with (4.25) shows that  in the approximat ion  which underlies (4.23) the 

dissipation is a little bi t  overestimated. 

REFERENCES 

11] J. H. M. Disselhorst. Acoustic resonance in open tubes. Thesis, Twente University of Technology 1978. 
[21 W. T. Koiter. Approximate solution of Wiener-Hopf type integral equations with applications. Proc. 

Kon. Ned. Ak. Wet. B57 (1954) 558. 
[31 J. H. M. Disselhorst. To be published. 
[4] J. Boersma. Note on an integral equation of viscous flow theory. J. Engineering Mathematics 12 (1978) 

237-243. 
[51 A. I. van de Vooren and A E. P. Veldman. Incompressible viscous flow near the leading edge of a flat 

plate admitting slip. J. Engineering Mathematics 9 (1975) 235-249. 
[61 S. N. Brown. On an integral equation of viscous flow theory. J. Engineering Mathematics 11 (1977) 

219-226. 
[7] B. W. Roos. Analytic functions and distributions in physics and engineering. Wiley & Sons, New York 

(1969). 
[81 H. S. Carslaw & J. C. Jaeger. Operational methods in applied mathematics. Oxford University Press 

(1951). 
[9] G. A. Campbell & R. M. Forster. Fourier integrals for practical applications. Van Nostrand, New York 

(1948). 
110] G. Doetsch. Introduction to the theory and application o f  the Laplace transformation. Springer, Berlin 

(1974). 

Journal o f  Engineering Math., Vol. 13 (1979) 271-287 


